To demonstrate the benefits of renewable energies for generating electricity in isolated areas in Peru
In this rural electrification project a both solar PV and pico-hydro systems were implemented in a total of 10 communities in the Cajamarca Region of Peru. The aim of the project was to improve both the standard of living of more than 400 families and also the health care and education in the area through the electrification of schools and health posts.
Prior to the technical implementation of the project, surveys were carried out amongst the communities and residents were consulted about their priorities for electricity use. As a result of this research, along with data on the availability of streams and budget considerations, the decision was taken to install one pico-hydro scheme in the community of Balcones, to provide energy for domestic use in 31 homes, as well as for 2 schools, a health post and a community building. Additionally, 15 Photovoltaic Systems (PVS) would be installed in schools, health posts and community centres in nine other communities.
One of the major activities during the implementation stage of the project was to develop technical and managerial skills within the communities, in order that each community would be able to own and operate the project on an economically sustainable model. In each village a committee was chosen to manage the finances and collect payments. The project team focused heavily on non-technical aspects, as experience shows that these are the most likely reasons for a project to fail. A few months after the project was complete, and again after three years, the technical and social aspects and, in particular, all matters relating to the management of the service were evaluated in order to learn lessons for future projects.
Technology, Operations and Maintenance

Financial Issues and Management
The average project cost for each solar community is estimated to be at € 6,546 and the micro-hydro with home electrification at € 26,556. The costs include all equipment, installation, training, community work and administration. The Municipality of Chirinos and its communities contributed a quarter of the total project costs. After the project was completed, the Municipality became the legal owner of the systems but signed a contract of concession to the community for management. The community in turn elects an Operation and Management Unit (OMU) to provide the service, do maintenance and collect the monthly fee (10 soles a month = ~$ 3 per household). There is also a supervising committee of users for oversight of the OMU. In some communities, the solar school systems are now managed by the Association of Parents and the teachers of the school, while in other communities there is an independent "Light Committee“. After 4 years of operation, there is an average of 255 soles (~€ 70) in each community's solar maintenance account. The funds have been raised by charging a small fee for community members to charge cell phones off the system, showing movies at the school house, organizing events, selling snacks at the school, and in one community, providing micro-loans (with interest) from the maintenance fund.Environmental Issues
The replacement of oil lanterns for lighting and batteries for radios and other applications with electricity from solar and hydro power has led to the reduction of 32,070 kg CO2 emissions per year.Social Issues

Results & Impacts
421 families – an estimated 2100 people -- have gained access to electricity (31 of these from the pico-hydro scheme), which has significantly improved the quality of life in the communities. The bottom-up implementation approach has promoted local leadership and community decision-making. The project can serve as an example of an appropriate development model that could be replicated in village-scale renewable energy projects. The project was also the first joint solar installation of these two partners, so the projects also served as an opportunity to build technical skills and lay the groundwork for a partnership with has flourished in the years since.Replicability
This development model could be replicated in other rural communities both in Peru and other developing countries. In Peru's northern Andes, for example, approximately 800,000 inhabitants have no access to electricity or other modern energy services. The modular design technology, the short timeframe that is required for the implementation, and links to poverty alleviation and rural economic development are also positive reasons to replicate this project in other parts of the world.Lessons learned
An evaluation after four years of operation showed that the degree of management organization varied greatly between the nine communities. Where there was a strong organization (the Parent's Association, teachers or a committee) the system continued to function and there were small sums for maintenance costs. However, in some of the communities with weaker management, raising the funds for the operation and maintenance of the system has been a problem. In fact, where there was weak management, two of the panels were stolen. Although the financial responsibilities were agreed and certified in each community, many people have made no monthly contributions. Because of this, future projects should identify fund-raising mechanisms and, if necessary, involve the municipality. Another lesson learned is that awareness raising amongst the users with regards to the advantages of renewable energy, as well as its limitations, is very important.. The picro-hydro project extends electricity to each household, the solar projects were designed just for communal uses. While communal uses, such as schools, can provide benefits, communities seem to prefer home electrification, and are more agreeable to pay for the service. Of course electrification of each household would multiply the scale of the project and budget requirements. In future projects an in-depth assessment of the pros and cons of providing domestic energy vs. communal uses should be evaluated. Long term monitoring showed that the electricity at the rural health posts is infrequently used because medical staff only visit these rural communities once a month– and only in the daytime. There are community- based health promoters, with access to the health posts, but their homes are at quite a distance walking from the health posts, so they rarely walk to the health post at night to get supplies to treat a sick person. For future projects, the electrification of health posts only make sense if there is permanent staff, equipment such as vaccine refrigerators or sterilization equipment and a regional health system that will supply the vaccines. The greatest uses turned out to be the charging of cell phones of many people in the communities and the use of the DVDs for education and training. Finally, the grid may arrive in the next few years, but since the inception of the project, the community representatives signed a contract that the solar systems could be used on farther off villages in the case that the grid arrives. In the case of the micro-hydro, the community is considering connecting it to the grid, or using it independently for coffee processing.Projects with same technology
The Use of Solar Energy Applications in Sheep Breeding in Georgia
Exchange: Survey of Suppliers and Practitioners: Load Controllers Available for Micro-Hydro Projects in South and Southeast Asia
The applicants propose a multi-lateral, output-based technical development knowledge exchange for a technical component, the load controller
Projects in same country
Small Wind Power Generation Systems to Provide Clean Energy in Poor Rural Areas
To show that small wind power generation systems are a suitable technology for rural electrification in Peru